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ABSTRACT

Conceptual design of a high efficiency civil tiltrotor (HERYT as part of NASAs Revolutionary Vertical Lift Technol-
ogy (RVLT) project is studied using the NASA Design and Arsigyof Rotorcraft (NDARC) software with Rotorcraft
Optimization Tools (RCOTOOLS) and the particle swarm ojtation (PSO) algorithm. A gradient-based method
is first applied for rotor disk and wing loading sizing optraiion to collectively minimize platform empty, mission
fuel weight and engine power requirements. An optimum defigm the study is then used to further minimize
emissions as a function of cruise altitude. The results noefi that gradient-based methods are limited as a multi-
modal solution space exists with local minima’s, hence igraefree methods are required. As pre-processing to an
evolutionary search process with PSO, a design variabktséty analysis was undertaken to identify the importanc
of sizing parameters on emissions. The solution generatélebswarm method resulted in significant improvements
in emissions relative to baseline and gradient-based rdsthithe findings confirmed the merits of population-based
optimization algorithms for rotorcraft conceptual sizing

INTRODUCTION

The environmental impact of commercial aviation is of sfigaint importance to the aerospace community and with cémat
change concerns, the design of aircraft with low emissiarts reoise becomes a critical design requirement. According|
environmental considerations need to be factored at etayes of aircraft design so that a systematic investigatmhquan-
tification into the trade-offs involved in meeting specifitise and emissions constraints can be evaluated. It hassheam
that improving environmental performance of an aircradtdvertently results in higher operating costs and/or redyerfor-
mance (Ref.[1). In this framework, aircraft design for restienvironmental impact is well suited towards finding ariroat
set of solutions using a multi-objective optimization famork. This will allow system level trades between the ofdjes to

be analyzed before a final design is selected.

The development of computational tools and methods to stippircraft conceptual and preliminary design by automa-
tion using mixed fidelity-solvers in an optimization framek is critical to the study-of-domain. Johnson (Ref. 2)eleped
NDARC which is a conceptual/preliminary design and analgside for rapidly sizing and conducting performance aigbfs
new rotorcraft concepts. Meyn (R&f. 3) introduced RCOTO@h8ouple NDARC with OpenMDAO (Ref.|4) using validated
software methods and approaches to facilitate a robushaatiion framework. Johnson and Sinsay (Réf. 5) develomed a
information manager that effectively organizes and shairesaft data between solvers to facilitate multi-fidebtyalysis in a
collaborative design environment. Lier et al. (Ref. 6)itier developed a conceptual and preliminary design todihatmod-
els platform geometry in a CAD environment to evaluate thie@dgamic, mass and structural properties of emergingeati
configurations. Enconniere, Ortiz-Carretero and Pacl{iRés.[7), proposed a multidisciplinary methodology to et the
environmental and operational benefits of a compound cbeotiarcraft. The effects of cruise speed, altitude, cliraterand
mission length were evaluated for a mission ranging fromo=D0 km. Optimization resulted in collective reduction iisgion
duration, fuel burn, anbllO (Nitrogen Oxides) emissions. Ali, Goulos and Pachidis (Bgfalso presented an integrated mul-
tidisciplinary simulation framework that was deployed fbe comprehensive assessment of combined helicopterrplame
system at a mission level to enhance operational perforenand to limit environmental impact. Their results sugghat t
while a helicopter can offer significant improvement in theylpad-range capability while simultaneously maintainthe
required airworthiness requirements, there is a detriaiémipact on emissions, specifically withOy. Accordingly this con-
flicting performance imposes a design trade-off betweehdoenomy and environmental performance. Similarly Ruasel
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Basset (Ref.]9), also used computational tools to show #sigding rotorcraft for reduced environmental impact gigantly
influences aircraft configuration as the rotorcraft that lddypically operate at high altitudes, is then requiredngise lower
and slower to reduce the effect Dy which inadvertently increases fuel burn a&@, emissions.

The development of computational tools for rotorcraft aptaal design with low environmental impact is a goal. A
well-defined concept at conceptual phase will support arggperformance gains as the design progresses to preliyranar
detail design stages. In this work, optimization methodswsed to support rotorcraft sizing to minimize emissionsaio
outlined mission . The software package RCOTOOLS (Ref. ) WipenMDAO (Ref[4), is coupled to NDARC (Réf. 2) to
compute platform performances of the entered inputs. Thepatational framework is also used to explore the topology o
the design space as a function of sizing parameters to dethe feasibility of gradient-based optimization metholh the
process, first order design and objective measure setisiiare evaluated to model the relationship between ingmatrpeters
on performance output. The optimization framework is alstereded with increased dimensionality by the integratibn o
additional sizing parameters in a gradient-free optinniwa¢énvironment to sustain further improvements in emissio

BACKGROUND

The research undertaken contributes to the state-offthie-aotorcraft parametric sizing with focus on thé) utilization
of dedicated software packages developed at NASA to supiperiesign of next generation rotary wing platforms forlcivi
applications; includingb) the definition of best-practices and approaches requirsdfport a parametric sizing framework;
and(c) execution of a parametric sizing process using differenfigarations of a tiltrotor platform to demonstrate the first
order design sensitivities of the sizing parameters onsoris. The research is to demonstrate the importance oepturel
sizing to ensure the platform can efficiently sustain regpimission goals and that the integrated technologies cahcugent
aerospace demands and challenges. Proper sizing at esidy déages will avoid the situation of optimizing a poor cept at
later phases.

Engineering optimization problems are represented by gbtoasolution space that may have many local minima to the
objective function with respect to the selected designaldeis and constraints. Hence, convergence to a singleldieba
solution is not always achievable. Accordingly if multigelutions (locally and/or globally optimal) are estabéidhthey can
be analyzed to evaluate the hidden properties (or reldtipasbetween the modeled parameters, and to form problenaitio
knowledge. Gradient-based optimization algorithms ark sugted to transit to a solution from an initial startingipbwith
rapid computation turn-over time relative to populatiaséed algorithms. The knowledge gained from this procedh, tive
formulation of solution landscape topology type (uni-mlogilamulti-modal) will address if stochastic optimizatiorethods
are required to sustain global performance improvements.

In this work, a multi-disciplinary design, analysis andioptzation (MDAQO) framework is initially used for rotorcrésizing.
This includes a Python-based framework that is applied fdesign trade study using the baseline HECTR configuration
developed by Silva et al. (Ref. [10). A design sweep is unllerntdo qualitatively model the solution topology with input
parameters including rotor wing and disk loadings on miss$i@l, W;q, platform empty weightWempty, and engine power
requirementsP.¢, as a function of cruise altitude. From the database, a datelsolution with an acceptable compromise
between the conflicting objectives is selected for furtliEng optimization to minimize the Emission Trading SchefB&sS).

The analysis will outline the role of gradient-based methimdconceptual sizing and the limitations of this approamtsizing
efforts where problem dimensionality is high.

The analysis will also be extended with a greater degrefeeefdlom as additional sizing parameters are introduced. Ac
cordingly evolutionary algorithms will be applied in an@ffto further lower emissions by an order of magnitude. TB®P
theory (Refl_11) will be used that is capable of converging tfpobal minima for complex engineering problems (Refs18)--

As population-based algorithms are computationally esiten a design variable sensitivity analysis will suppbet $tudy goals

to model the impact of sizing parameters on output objediv¢hat unimportant parameters can be identified and exalude
from PSO simulations to limit computational overheads. Atadost-processing, the success of the gradient-freeoth@th
converging to a global minima is examined.

The mission profile that will be used for sizing optimizatisnpresented in Tablg 1. It represents a civil tiltrotor (TR
with a high wing configuration and engines in tilting naceltbat are sized to efficiently transport 4-6 passengers débign
mission’s first segment is taxi at maximum continuous poweffi’e minutes to burn a representative amount of fuel. The
weight at the beginning of the first segment defines desigssgneeight. The second segment is a hover out of ground effect
for five minutes. All hovers are performed with the hover tetate. The third segment is a climb maneuver at 300 ft / minute
from take-off to cruise altitude with intermediate ratedvyeo. The horizontal distance covered during climb contebuo the
total cruise range of 400 nm in segment 4. Segment 5 represesdrve with a flying time of 30 minutes.



Table 1. HECTR Mission Profile Segment Details

Mission Segment Altitude Day Time Distance Airspeed Power Engine
Segment Type (ft) (mins) (nm) (Vki5) Available (%) Rating

1 taxilwarm-up 5,000 ISA+ZTC 5 - e 100 MCP

2 Hover OGE 5,000 ISA+ZC 5 . e 95 MRP

3 Climb? 5000 ISA+20C e Credit to cruise 100 95 IRP

4 Cruise 25,000 ISA 400 - credit from climb 240 90 MCP

5 Reserve fe ISA 30 e 150 100 MCP

aMaximum Continuous Power; °Maximum Rated Power; ©Intermediate Rated Power
dClimb at a rate of climb (ROC) of 300 ft/min from present aitle to next segment altitude

T Horizontal velocity (TAS)

€Baseline platform cruising altitude at 25,000ft; subjecthange with optimization for low emission.

APPROACH

Optimization is defined using the following notation:

min (X, p)
subjectto g(x,p) >
h(x,p) =

X1 <X <xus(i=1,...,n)

where the objective function vectdr, is a function to be minimized (or maximized) over designtee, and a fixed parameter
vector, p; g andh are inequality and equality constraints; aqgs andx; yg are the lower and upper bounds for ihedesign
variable, respectively.

0 @)
0

To minimize multiple objectives for the input design vectarweighted sum approach is used. The objective is trans-
formed into an aggregated function by multiplying each otye by a weighting factor and summing up all weighted otdyec
functions:

fweighted sun= W1 f1 +Wo f2 + ... 4 Wi (2

wherew;(i = 1,...,m) is a weighting factor for they, objective function and is selected in proportion to thetreéeimportance
of the objective.

Equatior1 is defined in RCOTOOLS with input variables andst@ints. The summation of the objectives with weights in
Equatior2 is then used by the optimizer for function miniati@n. Figuré 1l outlines the five modules that define the sobpe
the sizing simulations.



1. Starting Inputs: Baseline Objectives with Weights Optimized Outputs

Alt. = 25,000 ft / / m!n. W.e|g.ht Empty(1.00) / / Wi Leeelie
WL = {46,48,...,54} min. Mission Fue(5.00) . :
. . Disk Loading
DL = {8.00,8.50,...,12.00} min. Engine Power12.50)
| Baseline versus Optimized Minima l
Starting Inputs: Optimized MIF]IFn-El _______ algjéc_tlxlgs-v_vgh-gv-eéﬁt-s_ R b})ﬁr%fzé& EJ-u;p_ut_s_ N
Alt. = 25,000 ft / / ) .
Wing Loading mln ETS(250)/ /min. ATR (2 108) Wing Loading
Disk Loading / // 2l Lorling
4. Starting Inputs: Optimized Minima Objectlves with Weights Optimized Outputs
Cruise Altitude / /min- ETS(250)/ / min. ATR (2x 108)//// Cruise Altitude
5. Baseline versus Optimized Minima ‘

Fig. 1. Overview of the optimization approach used to size HETR

The gradient-based optimization framework is structuretbbows:

1. A parametric sweep is executed that varies the wing alkdahisling of the baseline (Reéf. [10) over a defined intervadjean
at fixed cruise altitude. A weighted sum method is imposedefind the multi-objective fitness function that minimizes
platformWempty; Wruel; @ndPreq. The outputs will represent the optimized configuration dfgwand disk loading.

2. A configuration with lowW; g from the database in module one is identified and comparedseline (Ref. 10).

3. The selected configuration from module one is used as e fo@int for further design iterations at fixed cruise adkiu
The design is now optimized for low emissions with metricsSEINd ATR independently minimized. Modified wing and
disk loadings are recorded as outputs for each measure.

4. The optimized wing and disk loading configuration from miecthree are used as base starting points to further miaimiz
ETS and ATR as a function of cruise altitude.

5. The design in module four represents the optimum configurélow emissions) in the formed framework. The emission
performance of the optimum is evaluated against baselirfilisg et al. (Ref._10) in module one.

The PSO algorithm is further used for objective functionimization when the problem scope is extended which limigs th
use of gradient-based methods. A variant of the original Re@®od by Kennedy (Réef. 11) was developed by Khurana [R&f. 20
which incorporates adaptive mutation operators to indeegch diversity, hence mitigate convergence to a locakisoland
was used in the analysis to follow. The algorithm has beesrsitely validated on benchmark test functions with dertrated
convergence to a global minima for complex solution topm@sgvhere input dimensionality size matches the scope of the
rotorcraft sizing problem to follow. The algorithm has alseen used with success for airfoil design problems (Ref, 14)
and has been coupled with artificial neural networks to eodahe design computational time needed to derive efficient
concepts in aerodynamic shape optimization applicatiBes.(21). Coupled with a parameter sensitivity study, th©P@hs
are formulated to study the relationship between problemedsionality and objective fithess so that total iteratioesded to
generate a solution remain low without compromising solufeasibility.



RESULTS

In the results to follow, a gradient-based process is firplémented to guide the solution toward an acceptable design.
The limitations with the applied approach are identifiedfuiither progress the design phase, the PSO method is irteddnd
as pre-processing, design variable sensitivity methaglpi@sented that quantitatively and qualitatively evaltia¢ degree-of-
influence of the design variables on objective function. fid=ilts are then used to execute gradient-free optimizatios to
establish a global optimum with minimal computational dnesad.

Gradient-based analysis

Here, RCOTOOLS (Ref.|3) with OpenMDAO (Réf. 4) is used to gatedata for the optimization cases outlined in Figure
. The Sequential Least Squares Programming (SLSQP) métregplied to derive the gradients of the objective function
Optimization convergence is further assessed by the changmasurable output which needs to be within a user-defined
tolerance over successive user-defined iterations.

e Module One: Multi-Objective Optimization of Weights (fuel and empty) and Engine Power
The database of solutions generated by the sweep run ardadadé&igurd 2.
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Fig. 2. Representation of the solution space as a function @fing and disk loadings on mission fuel weight at 25,000ft

The analysis confirms that the solution space for missiohviigéght is uneven and many sizing configurations exist for
the defined objectives. This solution pattern is also cemsifor empty weight and engine power. The solution topplog
is further sensitive to the magnitude of the weighting parters and convergence at disparate configurations occurs fo
unigue starting points. The multi-modality shown in thiseas attributed to the interplay between aerodynamiasststres,
propulsion, and emissions models. Studies involving aindigtiplinary design optimization framework with the giing

of emission and acoustic models will refine the solution togy toward a global minima. Further stochastic methods$ wil
derive a solution toward a global point.

e Module Two: Performance evaluation of baseline with Optimizd Minima
The performances of the optimum platform from module onensyl star in Fig[ 2(3)) is evaluated against baseline (F®f. 1
in Table[2.

Table 2. Optimization for Low Weights and Engine Power Requiements at 25,000 ft
WL DL W (Ib)  Wempty (ID)  Reg (hp) ETS (kgCO,)  ATR (nano deg C)
Baseline (Ref. 10). 50.00 9.00 621.83 5535.51 798.58 1057.7 36.70
Optimum (Fig[2) 54.00 9.63 624.75 5481.77 798.40 1062.68 36.70

Shaded entries represent decreased entries relativediingas
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Relative to baseline, the optimum configuration from theapaatric trade study resulted in a 0.50% increase in missieh f
weight; a 1.00% decrease in empty weight; with a negligiliange inPe. Emission metrics were not incorporated as
objectives in this analysis, hence ETS increases by 0.56%hgre is no change in ATR.

e Module Three: Emission Optimization as a function of WL and DL at 25,000 ft
The optimum configuration from module one is further usedze YL and DL to independently minimize ETS and ATR.

The converged configuration is evaluated against baselifable[3.

Table 3. Optimization for Low Emission at 25,000 ft
WL DL Wa (Ib) Wempty (ID)  Beq(hp) ETS (kgCO2) ATR (nano deg C)

Optimized Baseline
4, . 24.7 481.77 798.4 1062. 7
(database in Module 2, Talile 2)5 00 963 6 5 548 98.40 062.68 36.70
Optimum for ETS 48.70 6.34 602.33 6132.30 800.00 1024.54 5036.
Optimum for ATR 5425 6.00 604.67 6454.41 800.51 1028.52 4(B6.

Optimization for emission lowers mission fuel weight reganents relative to baseline with a reduction that is in sxod 3%

for both ETS and ATR. As penalty, there is an increase in @tatfempty weight of the optimized designs at approximately
12% with the ETS-based design, and 18% with ATR. Engine paoaguirements only marginally increase with optimized
configurations. Specifically as was the target, a decreasmission is noted. The ETS generated solution has the algect
reduced by almost 4% relative to baseline, and this furtiveeied ATR, which was notimplemented in the objective fiorct

by approximately 0.50%. In the case of the ATR generatedisaluthe emission metric only decreases by 0.80% relative
to initial configuration, and ETS reduction is limited to apximately 3% (recalling ETS was not included as objective i
the ATR optimization run). The results confirm that a desigmpromise will be required to balance acceptable emission

performances with empty weight.

e Module Four: Emission Optimization as a function of Cruise Altitude
The converged WL and DL configurations from module three far&¥'S and ATR performances at 25,000 ft are fixed and

are now used to optimize cruise altitude in an effort to fertlower emissions.

Table 4. Cruise altitude optimization for Low Emissions
WL DL W (Ib)  Wempty (ID)  Reg(hp) ETS (kgCO2)  ATR (nano deg C)

ETS @ 25,000ft 48.70 6.34  602.33 6132.30 800.00 1024.54 036.5
ETS @ 26,250 ft 48.70 6.34  601.35 6131.29 800.00 1022.89 054.3
ATR @ 25,000t 54.25 6.00 604.67 6454.41 800.51 1028.52 036.4
ATR @ 20,000t 54.25 6.00 610.22 6432.42 772.24 1040.30 6.73

The optimized altitude for ETS minimization increases 35D, ft to 26,250 ft from baseline setting. This has the impact
of marginally loweringWs g andWempty With no change tdq. ETS is also marginally lowered, yet due to cruise at higher

altitude, ATR increases significantly by approximately 49%
In the study of optimizing ATR, the best cruise altitude isvéved from 25,000 ft to 20,000 ft. Accordingly there is an

increase iV, by almost 1%;Wempty lowers slightly; andReq decreases by approximately 3.50%. A cruise at lower
altitude adversely impacts ETS which has an increase insex@el%, yet ATR is lowered significantly by almost 82% as

was the objective.

e Module Five: Emissions Performance Evaluation against Basiee
As summary, the emissions at the optimized WL, DL and cruistidés are evaluated against baseline (Ref. 10) to gyantif

the performance improvements by optimization.



Table 5. Evaluation of emissions performance of optimizedancepts with baseline
WL DL Wi (Ib) Wempty (ID)  PReg(hp) ETS (kgCO2) ATR (nano deg C)

Baseline @ 25,000t 50.00 9.00 621.83 5535.51 798.58 1057.71 36.70
ETS @ 26,250 ft 48.70 6.34 601.35 6131.29 800.C  1022.89 54.30
ATR @ 20,000 ft 54.25 6.00 610.22 6432.42 772.24 1040.3( 6.73

Shaded entries represent decreased emission relativedtirtga(in bold).

In comparison to baseline, optimized concepts are configwith low DL which significantly increase®fmpty, yet the
magnitude ofNs,g decrease is marginal in comparison. There is a negligitéagh inPey at higher altitudes as baseline
and ETS optimized configurations are operating within a@ f2Eange of one another. The increase in cruise altitude avit
ETS focus design lowers ETS by approximately 3% relativestgeline, yet there is a significant increase in ATR by almost
50%.

The ATR generated concept which is cruising at a lower aéttelative to baseline is requiring a slight increase in fue
demands, and the low DL is attributing to a highésty. Low altitude operation is further attributing to a deceash«.
From an emissions perspective, ETS is decreased by 1.64%anubst significant decrease is with ATR that is lowered by
almost 82%.

The gradient-based optimization module adopted in the sv¢fig. [1) is not ideal as it consists of many steps (studies)
which need to be carefully defined to iteratively refine tharsle space, hence guide the solution toward low emissiolnt flig
The analysis further confirmed that a multi-modal solutipace exists, hence population-based optimization methozls
considered. Evolutionary Algorithms (EA) which are inggirby biological evolution do not require a starting pointhe
design problem, and the search also does not rely on the datigruof objective gradients, hence are ideal to address th
observed limitations with the gradient design approach.

Design Variable Sensitivity Analysis using qualitative mans

To facilitate optimization using population based alduris, the sensitivity of the input parameters on output isssed so
that variables that have minimal influence on objectivesdeatified. The qualitative representation of parametasisigity
on objective function is first assessed using a full factgslan. A test matrix of rotorcraft configurations are formiey
combinations of pairwise permutations loSizing variables. The parameters are perturbed two-way pvevels with the
remaining variables held constant at their respectivelin@ssetting. For each pairwise interaction, emission tatdshed
using NDARC and the data is projected using contour plotsegtimate of the interaction effects is then visually essaleld
to extract the underlying patterns or features that existsé data.

In this framework, additional design variables are introgtliin Tablé b together with WL and DL parameters from earlier
gradient-based runs to progress the conceptual sizing effing evolutionary methods. Parameter intervals arepeapo
represent the optimization search space envelope, anaphéto-output sensitivity is assessed in this range. Tdeelne
configuration by Silva et al. (Ref._1L0) is also presented éenence.

Table 6. HECTR baseline design parameters with interval rages used for sensitivity analysis on emissions

fed VTIPRer (1) DL WL fspan thickTR tSpan Alt. Vtip
Baseline (Ref._10) 0.00352 750 9 50 0.05 0.20 15 25k 383
Intervals [0.00332,0.00435]  [730,763] [6,11] [45,56] [0@39] [0.18,0.23] [11,19] [12k,26.5k] [340,480]

Where: DL = Disk Loading; WL = Wing Loadingfcq = Fuselage drag coefficientsyan = ratio of wing panel span to
wing span (one side};Span = Tail Span;thickTR = tiltrotor wing airfoil thickness-to-chord ratio/ TIPrer (1) = Main rotor
tip Velocity at hover = 70% of tip velocity of tail rotov T1Pgeg (2); Altitude (ft) = Segment 4 (Tablel 1); andtip = Mission
segment 4 tip velocity as a fraction of tip velocity at hover.

Each of thek = 9 design parameters in Tallle 6 are permutated with 6 levels across the defined interval range. The
objective function is sampled on @x p full factorial plan which corresponds to the projection nput-to-output data on
@ = 36 contour tiles. This results in a database of 1296 poiat® e size in each tile number of tiles = 36« 36) which

are gualitatively presented in Figuigs 3 &hd 4 for ETS and ASdRectively.
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The x andy axis on each tile represent the design variable limits frahld[6 and the normalized contours model the
output magnitude. Figufd 3 confirms that the design varsabtdiectively influence ETS and distinct patterns have gekr
For instance, low DL readings correspond to low ETS and tbiiwity persists across all design parameters. As was to be
expected, low altitude flight increases emissions, hengeaaltitude cruise is to be avoided. The highest ETS valuerdszb
in the database was with variation in altitude and fractibaraise tip velocity to tip velocity at hover (top left comef Alt.
vs. Vtiptile). These parameters will have a significant influenceataachieving low ETS flight in gradient-free optimization
runs to follow.

Relatively, the evolution of ATR with pair-wise variatioé the sizing parameters confirms a stagnant pattern in &igur

[4. Here, altitude alone is shown to impact the output met8pecifically low altitude flight favorably results in low ATR
performances and this pattern is directly opposite to thh BTS performances that were modeled in Fifilire 3 at lowudbit.
Theoretically, ATR quantifies the lifetime global mean teargiure change caused by operation of an aircraft, as a neeafsu
climate change (Ref. 22). The metric is a function of rad@&forcing (RF) which is an instantaneous measure that igsnt
the change in energy that produces changes in climate piegeihe total RF that is generated by polluta@€,, NO,
and Aviation Induced Cloudiness (AIC) is used to calculaedlobal temperature response that further factors theatipg
lifetime of the aircraft to determine the total climate incpa

AIC further factors contrails and aviation-induced cirelsuds, hence is a function of cruise altitude (Ref. 22). iges
for minimum ATR factors the time horizon, discount rate, igtimg altitude and speed, including engine technologiorf-
term effects are not considered, then radiative forcingtd@O, influences ATR with high cruise altitude. If only short-term
impacts are factored, thédOy emissions have a greater impact, and a lower cruise altiegldts in decreased climate impact,
despite increased fuel burn a@@, emissions. The inclusion of AIC in the analysis of ATR hasgn#icant impact on the
design, and a low cruise altitude is preferred. This patters qualitatively captured in Figuré 4.

In the optimization problems to follow, minimization of ETWll be the focus as there are active interactions between
the nine variables on objective (Figl 3). Relatively in tlmalgsis for ATR, only altitude was an influencing factor (Fid).
Accordingly ETS minimization is well suited for analysis Aystochastic method.

Design Variable Sensitivity Analysis using quantitative neans

The qualitative plots in Figurés$ 3 abd 4 do not provide astiatil measure of the sensitivities between model inpudsatputs,
and a quantitative approach is needed to establish thessuresa Morris screening algorithm (Ref. 23) is used andieppl
a Design of Experiment (DoE) approach to perturb the desagiables one-factor-at-a-time to form a relationship lestw
inputs and model output. A detailed mathematical derivaesiod execution of the Morris sensitivity method is docuradnh
the literature (Refs. 14, 24—29). Here the procedure islpieitlined:

1. The method is initiated by selecting a base trajectornanfiomised value*, of all respective input variableX, such
that they are in the defined ranges of set values. The subsemoeel output is established.

2. Change the value of one randomly selected variable iif'ttimmponent of trajectorX* by +A such that the perturbed
vectorX is still in the defined variable limits. The other inputs mtain their respective start values. Model output of
X@ is established.

3. Value of another sampling poidt® is modified+A with previous modified variablX ™) held at its changed value, and
all other factors at their original start values. Hence, mst@int onX @ requires that it differs fronX? in the randomly
selected!" component bytA. The model output is again established followXg perturbation.

4. Hence, from above the method requires that each poin@jactory X* differs from the preceding one by only one
coordinate. Variable modification steps are repeated fan@lit factors, hence in a trajectory each input parametér o
changes once by a predefined stefy, and at each perturbation, model output is established.

5. Repeat steps 1+4- times and, at each run, a different vector of start valuege(ttories)X* is set to ensure an acceptable
coverage of design points in the parameter space is factoreénsitivity evaluation.
The trajectories from—runs are then used to evaluate the coefficient of variatiemsivity) by the measure of the elementary

effect (EE) of each input variable,on model output. The EE is computed between two points dfr#fjectory using:

Y (X +4e) —Y(X)
X .

EEi(X) = 3)



Where the divisorA is a user-defined fixed step size, amds theit" unit vector. Hence, each EE was computed with
observations at the pair of poifsandX + Asg,.

A set ofrr different random trajectories (indé® is defined in the hypercube of input variables, which presidestimates
of EEjr for each input variablé With this, there are(k+ 1) evaluations of the model outpt, The meany, and standard
deviation,o, of the EE is computed for each input variabley:

1 r
Hi= T FglEEi (XR) 4)
and
1 r
o = \/(r =) Fgl[EEi (XRr) — Hi]?. (5)

A modification of measurg: was proposed by Campolongo et al. (Refl 30) wifh which uses the distribution of the
absolute values of EE in Equatibh 6. If the distribution af fE contains a negative element, which occurs when the nimdel
non-monotonic, some effects may cancel each other out wirapuating the mean. This will not provide a reliable meastre o
the ranking of the importance of design factors (variabdesjnodel output. Instead, it is suggested that the mean dlooly
be computed on the absolute values of EE witrso that the occurrence of the effects of opposite signs islado

W= F%'EE'(XR)" (6)

Even with ¥, the standard deviation (Eqhl 5) of EE remains a criticalcaigr of the non-linearity in input parameters on

model output by interaction with other state variables. Bytting the two statistical measures, the Morris methodsifes
inputi to have the following effect on model output:

1. Negligible: Low mean and low standard deviation.
2. Linear and additive: High mean and low standard deviation.

3. Non-linear or involved in interactions with other input par ameters: High standard deviation.

In this analysisy = 200, random trajectories of the input variables were matjdiencer (k+ 1) = 200(9 + 1) = 2000

rotorcraft configurations were formed for variable scregniin Figurd b, the sensitivity distribution of the inputerh Tabld 6
on ETS are ranked as the summatiorupfando.
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Fig. 5. Ranking of main first order and interaction effects ofrotorcraft sizing parameters on ETS
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In Figure[®, DL is ranked as the highest contributing factoETS by the summation of the main and collective interaction
effects with other parameters. VariabMé p follows with the level-of-importance that closely matcltieat of DL. At the other
end of the spectrunV, TIPxer (1) is established with the lowest impact, even though the niééctes not the lowest recorded,
yet it does have minimal interaction relative to other pagtars in influencing the objective measure. The knowledgeeda
from this analysis will guide the formation of optimizatiomns using gradient-free methods.

Optimization using the Particle Swarm Theory

The limitations of the gradient-based optimization mettmelstablish a near optimum solution for a simplified two-glivsional
sizing case with DL and WL as input parameters has been edtalli This challenge is now addressed with the PSO method
(Ref.[20) that is capable of handling a greater degree+okdsionality as optimization inputs without compromisgigbal
optimality. The data from the design variable sensitivitylgsis using the quantitative approach in Fiddre 5 pravichdical
information that is used to define the dimensionality of thebfem. Specifically optimization runs to be executed from t
perspective of input dimensionality includéa) full set of nine input parameters; an@) reduced set with the removal of
unimportant parameter(s) identified in Figlite 5. The anshydl confirm the impact of input dimensionality on optinitgland

on convergence rate.

An unconstrained optimization framework is formed with tigective function defined to minimize ETS. The limits of the
design variables from Tablé 6 are used and the PSO algorittiunther setup as follows:

(a) A swarm size of 20 particles.

(b) The maximum velocity of the particles was capped as a funci@ariable dimensional search space. This setting clentro
the scalar step lengthy,, or the maximum size of the variable rate-of-change at gachtion. Numerical experiments are
performed to establish the magnitudecof

(c) To mitigate convergence to a local minima, mutation opesatere activated based on the principles developed by Khu-
rana and Massey (Réf.20). Probability of mutation is gogdry the search patterns of the particles that is dynarmicall
monitored during the iterative cycle. The adaptive proeassires that mutation is most active when the swarm is con-
verging to a solution region so that a local minima is avoided

(d) Optimization termination is set when the fitness of the gldiest particle; personal best fithess of the worst perfogmin
particle in the swarm subtracted from the fitness of the dlbbat; and the standard deviation of the personal best ditnes
of each patrticle in the swarm collectively do not change diwer successive iterations. This approach was previously
validated by Khurana and Massey (Refl 20)

In the PSO run with aeduced set analysis,VTIPzer(1) Was not factored in the optimization (was set at default lbzse
value), hence the dimensionality of the optimization wastid from nine variablesf(ll set) to eight. The converged fithess
with iterations needed to achieve an optimum configuratioridiv ETS performance is presented in Figure 6.

Fitness (ETS) lterations
1000 - - 800
998 8 - 700
- 600
996 -
0.80% 500
994 -
400
992 4 v
- 300
990 A
- 200
988 - - 100
986 - -0
Full Set (9) Reduced Set (8)

M Fitness (ETS) M Iterations

Fig. 6. PSO fitness and convergence iterations results withime variables versus eight
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To establish an acceptable magnitude of particle scalpristeyth,a, several PSO runs were executed and the converged
ETS result was noted. The solutions were within a 1% variamckthe setting with the lowest ETS was with a step length of
75% of dimensional search space in Fidure 6. The analysiforeed that PSO results are not sensitive to starting paisiin
gradient-free methods since the search volume is randoopylpted and a negligible change in model output was esteli
across the independent optimization runs.

Figure[® further validates a reduction in input dimensidgpdlas a minimal impact on converged ETS and significant on
iterations needed to achieve a solution. As is shown, ETS3giseh with reduced variable set relative to full populatioin
parameters with a difference that is less than 1%. Yet, tHeaed set significantly lowers the number of PSO iteratibas t
are needed for convergence. A 25% reduction results inaelwveurs of computing time saving relative to the full setisTis
significant even when NDARC, as a low-fidelity solver is usethie analysis. This computational benefit will be trandfkra
when higher fidelity solvers are used in the optimizatiorplabdetail design.

The result is further interpreted to establish whetherdli®an acceptable balance between solution feasibilitycantpu-
tational efficiency. A 0.80% difference in solution optirityabppears minimal, yet it is critical that platform confrgtion is not
compromised at conceptual design to ensure design impemvsifollow at detail design. A significant reduction in cartipg
overheads is noted with reduction in problem dimensiopalit at conceptual sizing this benefit does not outweighapco-
mised solution. The knowledge gained from the sensitivitglgsis and optimization runs will be applicable in detabkiin
iterations where higher fidelity solvers are used, and obsuhg platform configuration required to sustain furthefgranance
improvements can be localized to critical sizing paransgteat have been identified through this analysis. Henceraaptual
design where low fidelity solvers are used and computatiovedhead is minimal, it is justified that all parametersrtérest
are included in the sizing to ensure optimality is not compuisezd.

As comparison, the performances of the configurations fdrimé¢he analysis are summarized in Tdble 7

Table 7. Comparative analysis of the established rotorcrafconfigurations using optimization methods relative to bas-
line

fd  VTIPeerqy DL WL fgqan thickTR tSpan Al Vtip ETS (kgCOp)

Baseline (Ref._10) 0.00352 750 9.00 50.00 0.050 0.20 15.00 0@5,0383 1057.71
Gradient-Based (Module 4 - Td0. 4)  0.00352 750 6.34 48.70 0.050.20 0 15.00 26,250 383 1022.89
PSO (Full Set - Fid.16) 0.00365 731 6.52 51.18 0.053 0.22 18.50,5683 395 991.22
PSO (Reduced Set - Figl 6) 0.00340 ¥50 6.07 51.18 0.056 0.23 18.37 23,016 409 998.81

Shaded entry represents minima ETS performance.
T Baseline value.

The optimization data using both gradient-based and gn&fiee methods in Tablg 7 result in performance improvemen
relative to baseline. The gradient optimization procesgels ETS by~ 3% with the manipulation of DL, WL, and cruise al-
titude following the optimization modules outlined in Figldl. Here, DL and WL are lowered, and cruise altitude is irszda
relative to baseline to sustain the noted performance ivgonent. The PSO simulations model an extended design spaee e
lope in an effort to further improve ETS performance. Botihdnd reduced variable set simulations result in ETS perforce
enhancements relative to the gradient-based optimizatiatysis. The full set PSO study lowers ETS by an additienab
than the best solution generated by the gradient-optiiizatethod, and the reduced variable set has a performamreve:
ment that is~ 2% lower. The performance gains between the two PSO runsiitet to< 1.0%, but are significantly higher
than baseline.

The convergence of the full set PSO sizing parameters ysaltigions that warrants further analysis to ensure gloptt o
mality has been achieved. Considerifig, there is scope for additional enhancements to ETS espeifidlis assumed that
airframe improvements with streamlined designs will loweag, hence minimize fuel burn. The converdgglis higher than
baseline and gradient-optimization result even thouglintieeval for f.y (Tab.[8) facilitates search at lower drag performances.
The result suggests that the low drag region was not exglbigehe PSO to sustain maximum available improvements.

Altitude is another parameter which is assumed to be at acoawerged state in the two PSO runs from a global optimality
perspective. Recalling in Figuré 3, it was qualitativelpwh that high altitude performances lower ETS, but in the RB8IGet
converged state the cruise altitude is low at 23,565 ft inmamson to 25,000 ft for baseline and 26,250 for the graediased
result. The upper limit of the altitude interval range in TEd8 that is available for the PSO to exploit is set at 26,5096t the
converged result is at a lower setting and directly conttadvith the expected performance gains that are achiebalsied on
the data from the sensitivity analysis in Figlie 3.

Considering the convergence of other parameters that haveiltuted to the lowering of ETS relative to the gradient-
based and baseline include increases in platform Wi, thickTR; tSpan; andVtip. This pattern is further consistent in
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the PSO run with reduced variables wh®'€I Pxer (1) Was set at baseline. Further in the reduced variable sefsaisiatven
though the convergedly is at the minimum state, it is still not at the lowest settihgttis available for exploration by the
PSO €dmin = 0.000332 in Tab[16). With this, further design improvementsliéely. Similar to the full set PSO run, cruise
altitude is also converged at a low setting and higher akisuwill increase ETS performance. The couplinggfand altitude
alone will drive improvements that will reduce the ETS perfance gap between the two PSO runs in Figlire 6 to a negligible
difference.

In future works, the integration of a gradient-based opation algorithm as a post-processor to a converged PS@wolu
is a viable path forward in an effort to address the abovetpoln this approach, the swarm algorithm is first used togetei
the search toward a solution region bounded about the gioipéina, and in the process will bypass the local valleys éxadt
in the search volume (as was confirmed in Figure 2). Once ajititl region, local search patterns need to be activatede,H
the input from the converged PSO solution can be used as iti@ization point for a gradient-based analysis to guide t
solution, using a suitable scalar step length, to a globalma. Specifically the issues relating to the non-convergen f.4
and altitude, and possibly other parameters will be addtess

The inclusion of ATR, including platform weights (empty afkl) as objectives in PSO also needs to be considered.
The data visualization charts in Figufds 3 &hd 4 showed tliatdie variations have an opposing impact on ETS and ATR.
Further, single objective optimization focused on ATR miization was not justified as altitude alone was determioduokt
an influencing parameter. Yet, ATR minimization needs to besiered in the sizing and a multi-objective optimization
formulation is required that further factors ETS with ATRdgmatform weights. A design compromise that yields acdapta
performances between emissions and weights can then idisstd.

CONCLUSION

A computational framework encompassing design optinoretbols for rotorcraft conceptual sizing was presentedralignt-
based optimization approach was first applied to improvession performance of the baseline with the optimizationlaf-p
form WL and DL. The analysis confirmed that a multi-modal sSolutspace exists, hence local optima solutions were estab-
lished. A population-based stochastic algorithm basedherparticle swarm theory was then used to address this aloAf
design variable sensitivity analysis was undertaken tditqtigely and quantitatively model the influence of rotatt sizing
parameters on emissions. It was shown that DL had a significgact on ETS, while the tip velocity at hover for the main
rotor had minimal influence. Two PSO runs were then formet tajiencompassed all sizing parameters; @rdvith reduced
dimensionality to evaluate the relative impact of problesfirdtion on solution feasibility and computational efficgy. The
objective from the two PSO runs were within 1%, yet the redutienensionality case converged with 25% fewer iterations.
Examination into the state of the PSO established solusaggests that a global optima has still not been achievedhand
utilization of gradient-based tools, as a post-processtiréd swarm solution is a justifiable next step.

The concepts presented are developed to aid rotorcrafeptuel sizing where the knowledge gained from the analysis
can be applied in detail design. Population based optiinizahethods are not suited when input dimensionality isese
coupled with high fidelity solvers as the computational beads, even with parallel computing will be extreme. Thelts$o
the sensitivity analysis are transferable for use at dé&siigns where variable(s) that have a significant impadiewobjective
measure can be targeted to exploit for further performamagesg Gradient-based tools are important at conceptuaés
identify the topology of the solution landscape. These wdshwill also be critical in detail designs to further finewuthe
solution since a well-defined starting point will exist agpui to an evolutionary search process from the concepesd
phase.
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